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Bayesian data mining of protein domains gives an efficient
predictive algorithm and new insight
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Abstract Identification of structural domains in uncharac-
terized protein sequences is important in the prediction of
protein tertiary folds and functional sites, and hence in
designing biologically active molecules. We present a new
predictive computational method of classifying a protein
into single, two continuous or two discontinuous domains
using Bayesian Data Mining. The algorithm requires only
the primary sequence and computer-predicted secondary
structure. It incorporates correlation patterns between
certain 3-dimensional motifs and some local helical folds
found conserved in the vicinity of protein domains with
high statistical confidence. The prediction of domain-class
by this computationally simple and fast method shows good
accuracy of prediction—average accuracies 83.3% for single
domain, 60% for two continuous and 65.7% for two
discontinuous domain proteins. Experiments on the large
validation sample show its performance to be significantly
better than that of DGS and DomSSEA. Computations of
Bayesian probabilities show important features in terms of

correlation of certain conserved patterns of secondary folds
and tertiary motifs and give new insight. Applications for
improved accuracy of predicting domain boundary points
relevant to protein structural and functional modeling are
also highlighted.
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Introduction

Substructures of proteins that can fold independently are
referred to as (structural) domains. Identification of such
regions or domain boundaries of proteins is of crucial
importance in structural biology and studies of structural
genomics and functions of proteins [1, 2]. Computational
methods of protein structure prediction and design require
the information of the number of likely domains and their
locations. This knowledge is also desired for accurate
elucidation of NMR and crystallographic data to determine
optimal tertiary structures.

Comparative sequence analysis by multiple sequence
alignment and structural homology modeling has been used
extensively for identifying the domains and tertiary struc-
tures of new proteins. However, in the absence of substantial
sequential similarity or internal repeats, or, in the case of
biased similarity, the method cannot be used or would risk
giving biased/inaccurate predictions. Ab initio predictions or
computational techniques independent of homology there-
fore provide promising alternatives. Notable among such
methods for domain boundary predictions are—the DGS
algorithm [3], SnapDRAGON [4], DomSSEA [5] with
predicted secondary structure and PPRODO [6].
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Domain Prediction by Guess (DGS) makes use of the
narrow distribution of protein domain size on protein
length. For proteins up to length 400 residues, it enumerates
putative domain boundaries and calculates their relative
likelihood under a probability model that considers only the
size and segment number of predicted domains. The
average accuracy (within ±20 residues around the ‘true’
boundaries) of its topmost predictions, for proteins up to
length 400 residues, reported so far is almost 100% for
single domains but 0% for two or more domain cases.

SnapDRAGON averages several hundred predictions
obtained from ab initio simulations of the predicted 3-
dimensional structures of a protein sequence to identify
likely domain regions. The overall accuracy of this method
for domain boundary prediction in a non-redundant sample
of 185 single and 231 multi domain proteins was reported
[4] to be about 72%. Its high computational complexity,
however, limits its applicability.

Domain Secondary Structure Alignment (DomSSEA) is a
fully automated method of domain assignment, using the
alignment of predicted secondary structures of target sequences
against observed secondary structures of chains with known
domain boundaries as assigned by Class Architecture Topology
Homology (CATH). The accuracy of prediction of domain
numbers by this method for proteins of size up to 400 residues
is reported [5] to be around 80% for single domain and 35%
for two or more domain proteins.

PPRODO predicts domain boundaries of proteins from
sequence information by a neural network. The network is
trained and tested using the values obtained from the
position-specific scoring matrix (PSSM) generated by PSI–
BLAST. It is reported to predict the domain boundaries
with an accuracy of about 66% using a resolution tolerance
of ±20 residues for two continuous domain proteins of sizes
up to 500 residues. However, it does not specify the
discontinuous domains and it is computationally expensive.

Other prominent methods incorporate linker–region predic-
tions between nearby domains; for example the neural network
based program DomCut. [7] The automated method of Tanaka
et al. [8] also uses neural networks trained on frequency data
of single and multiple residue patterns present in linker
segments. The prediction accuracies of these methods reported
so far are only about 54 and 42%, respectively.

While the above methods focus mainly on prediction of
domain boundaries and hence classifying as single, two or
multi-domain classes, none predicts continuous and discon-
tinuous domain categories before locating the likely domain
or linker regions. Moreover, the accuracy of predictions of
discontinuous domains1 of the computational methods
reported so far only ranges between 0 and 30%. Most of

these methods begin with an estimate or random choice of
the number of likely domains to locate the domain
boundaries and refine them by some criterion derived from
the representative (training) sets. Thus, there is a scope for
improvement in the accuracy of prediction if the domain
numbers and the type (continuous or discontinuous) are
first identified with substantial accuracy.

We have developed a new ab initio method called
Domain boundaries Prediction using Conserved local
Patterns (DPCP) which first classifies the given protein
sequence as 1d (single domain), 2d (two continuous
domains) or 2dd (two discontinuous domains) by a
Bayesian machine learning technique. Using this classifi-
cation, the method applies a heuristic algorithm to re-rank
the DGS solutions and select the top five solutions
accordingly. The heuristics are derived in terms of specific
configurations of certain conserved tertiary structural
patterns [9] and their statistical analogues in secondary
structures that we found near the domain regions of the
training sample. The domain boundary predictions using
the latter show remarkable improvement [10] over DGS
and the accuracy is also significantly better than DomSSEA
when tested on a large validation sample of proteins of size
up to 400 residues.

In this paper, we present the first phase (DPCP_0) of the
method–prediction of domain numbers by a Bayesian
machine-learning algorithm, which is derived from the
new insight we obtained by modeling the probability
distributions of certain conserved (geometrically invariant)
patterns in the secondary and tertiary structures of the
proteins in the training data set.

Materials and method: conserved structural patterns
and Bayesian computations

Training and validation data set

The protein domain information like domain number and
domain boundary positions were collected from the CATH
(http://cathwww.biochem.ucl.ac.uk/latest/index.html) protein
structure classification database [11] for a non-redundant set
of protein chains with negligible (<1 to 15%) sequence
homology. 2,150 proteins of sequence length (=number of
amino acids) 70 to 400 were selected. Of these, 1,440 were
in the single–domain class 1d, 365 in 2d and the remainder
in 2dd. Over 95% of the single–domain proteins here were
also identified in single domain-class in the SCOP database
[12] (web site: http://scop.mrc-lmb.cam.ac.uk/scop). This
percentage was about 74–80% in the case of two–domain
proteins; however, manual inspection showed CATH
classification to be correct in 88 to 96% of the latter. The
domain boundary points specified by CATH and SCOP

1 Discontinuous Domains: At least one of the domains region is
spread over disjoint portions of the protein sequence.
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were within ±15 residues vicinity for two continuous
domain cases. The same was true for at least one domain
boundary in the case of two discontinuous domains. We
have therefore chosen CATH as the reference for training
and validation.

The primary sequences for these proteins were obtained
from the Protein Data Bank (http://www.rcsb.org and [13]).
Random subsets of about 30–40% of the proteins of each
category were used in the training sample and the
remaining in validation sample in the experiments de-
scribed below. As the number of 1d proteins in the training
sample happens to be larger than the 2d and 2dd, only a
subset (hereafter called input set) were used in estimating
the probabilities for fitting the Bayesian model. This set has
almost equal representations of all the domain classes under
study; the subset of 1d proteins contained in it was selected
randomly. The minimum between-group variance technique
was used to divide the 1d training set for this selection. This
ensures a statistically insignificant variation from one
random subset to another. In view of the importance of
protein length distribution, as shown by earlier studies [3,
5], the input set was partitioned according to the lengths of
the proteins. As per the best statistical design, three length
groups: 70–250, 251–300 and 301–400 residues were
considered for data-analysis.

The entire training sample was used only for develop-
ment of heuristics for predictive classification from the
fitted Bayesian model. Jacknife type sampling technique is
used in validation runs to make the validation sample larger
in the case where the total number of proteins in a particular
length group and domain-class is less than 70.

Search for standard 3D-motifs and correlation
with 2D-folds

We first analyzed whether structures near the domain
boundaries possess any characteristic tertiary patterns
(motifs). Having found a statistically significant difference
between the single versus multi-domain protein structures
with respect to occurrence of some standard tertiary motifs,
we investigated a Bayesian model that would compute the
posterior probabilities of a domain-class given such a motif.
However, as our main objective is to develop an efficient
algorithm that uses only the primary sequence and a
computationally-derived secondary structure to predict the
domain-class for this sequence, we model these probabil-
ities in terms of the corresponding secondary structural
motifs using the estimates of necessary joint and condi-
tional probabilities.

We have analyzed the frequency distributions of occur-
rences of standard secondary and tertiary structural motifs
in the vicinity of domain boundaries in the proteins of the
input set. The secondary structural motifs are specific

configurations of the residue-wise secondary states pre-
dicted by PSIPRED [14] and the tertiary as predicted by
PROMOTIF [9]. These motifs are hereafter referred to as
2D-motifs and 3D-motifs, respectively. Comparisons are
also made with the occurrence of these patterns in single
domain proteins.

The PSIPRED algorithm for secondary-structure predic-
tion uses two feedforward neural networks, which perform
an analysis on output obtained from PSI–BLAST (Position
Specific Iterations of BLAST). The PSIPRED program
(http://bioinfo.cs.ucl.ac.uk/psipred) predicts the secondary
state helix (H), strand (E) coil (C) for each residue in the
given protein sequence and also assigns a confidence level
(on 0–9 scale) of each.

The PROMOTIF algorithm provides details of the
location and types of structural motifs in proteins of known
structure by analysis of Brookhaven format coordinate files.
The program calculates the secondary structure of the
protein using a variant of DSSP [15]. Further refinement of
this raw data and identification of various super-secondary
structures, and hence 3D-motifs from these, is done in a
manner similar to that practised in crystallographic structure
prediction using criteria based on consecutive bond length,
phi–psi angles, distance between C2-atoms of residues,
orientation of side chains, etc. [9]. The PROMOTIF
program (http://www.rubic.rdg.ac.uk./~gail/#Software)
identifies presence of standard 3D-motifs, namely, helix,
strands, hairpin loops, beta turns, gamma turns, and alpha-
beta-alpha in different parts of the given protein’s tertiary
structure.

In order to analyze the distinction, if any, in the
occurrence and/or the correlation between the 2D- and
3D-motifs near the domain boundaries against those in no-
domain regions in the proteins of the input set, we have
used a sliding-window approach. A window of size 40
residues is scanned along the protein sequences. The
successive windows, W1, W2, etc, from amino to carboxyl
termini of the sequence consist of segments of the first 40
residues, 41 to 80 residues, and so on. The last window has
an overlap of 40-n consecutive residues with its previous in
case the number of residues left for it is n where n<40. For
two-domain proteins, additional window-segments consist-
ing of 40 residues in the vicinity (±20 residues) of the
domain boundaries of all the continuous and discontinuous
domains are used.

For successive windows of each protein in the input set,
our program searches for (I) the presence of the standard
3D-motifs as identified by PROMOTIF and (II) the
occurrence of specific 2D-motifs as consecutive patches
of H, E and C predicted by PSIPRED. Simultaneously with
these, the frequency distribution of occurrence of domain
boundary points (dbp) in the successive sliding windows is
also obtained.
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Domain boundary point locations and 3D-motif
distributions

The frequency plots of shorter proteins (length 70 to 250)
showed that the sequence–portions covered by the windowsW2

to W4 have a high propensity to contain domain boundary
points (dbp). For longer proteins (length 251 to 400) the
portions covered by W3 to W7 are found to be potential dbp
regions. We shall denote these window unions as W*:

W � ¼ W2 [W3 [W4;

for proteins in length group 70 to 250 and,

W � ¼ W3 [W4 [W5 [W6 [W7; ð1Þ
for longer proteins.

The motif frequencies Ci; i=1,....., N were calculated for
each 3D-motif type Mj; j=1, ....., 5, for each protein in the
input data set; where N is the number of windows suitable
for the protein under consideration; M1 to M5, respectively,
imply helix, strands, beta-turns/gamma-turns, hairpin loops
and alpha-beta-alpha. On the basis of these frequency
values, the following three types of motif frequency plots
are computed for each motif type:

f0: Number of proteins for which Ci (Mj)=0
f1: Number of proteins for which Ci (Mj)=1
f1+: Number of proteins for which Ci (Mj)≥1

The frequency-plots of f1 and f1+ for M1 (hereafter
denoted by HLX), M2 (STR) and M3 (LOOP) and that of f0
for M2 are found significantly different in the case of single
(1d) and multi-domain (2d or 2dd) proteins. Therefore, for
fitting the Bayesian model, only the events that correspond
to these motifs are considered over the prominent
windows—i.e. the segments with a high propensity of
containing a dbp. The necessary details are outlined in the
Bayesian computations: prediction of protein domain class
and Results and discussion.

Estimates for joint probabilities of 2D- and 3D- motifs

Frequency distributions of standard 3D-motifs, namely,
HLX, STR, and LOOP, predicted by PROMOTIF are

obtained for the protein sequences in the input set. Based
on frequency analysis in the prominent windows, the
following configurations of the PSIPRED output are found
most suitable to define corresponding 2D-motifs: A
consecutive patch of six or more Hs predicted by PSIPRED
with a confidence level ≥8 is regarded as the 2D-motif of
type HLX; a consecutive patch of two or more Es with
confidence level ≥5 as 2D-motif of type STR; and four or
more consecutive Cs with a confidence level ≥6 as the 2D-
motif of type LOOP.

The marginal, conditional and joint probabilities of
occurrence of the 3D- and corresponding 2D-motifs in the
prominent window(s) are then estimated for the input set.
Some of these estimates are shown in Table 1. These
probabilities are also computed for overlapping segments of
a fixed size within window cluster W*; this is done mainly
to explore the nature of these probabilities in the regions
closer and farther away from the dbp, if any, in the window
of interest.

Optimal location GX

The optimal combination of overlapping segments in W* is
identified as the one for which there is maximum difference
between the estimated joint probabilities for the single and
two domain proteins of same length group in the input set.
We denote it by GX for motif type X. The best results (in
terms of distinction between different domain classes) for
the input set show the optimal segment size for the different
motif types as follows: segment size=25 residues for HLX,
segment size=15 residues for STR and LOOP. Overlap of
five residues between consecutive segments is used for
each case.

Bayesian computations: prediction of protein
domain class

Using the probability distributions estimated for the input
set, a Bayesian algorithm is trained to classify a protein
sequence as 1d, 2d, or 2dd.

Table 1 Joint probabilities of the 3D-motifs and same type of 2D-motifs: these are estimated as average relative frequencies in the input set

Motif type Two continuous domain proteins Single domain proteins

Pr{same type of 2D-
& 3D-motif in W*}

Pr{same type of 2D- & 3D- motif
at same location in W*}

Pr{same type of 2D-
& 3D-motif in W*}

Pr{same type of 2D- & 3D- motif
at same location in W*}

HLX 0.858696 0.152174 0.951673 0.217472
STR 0.997382 0.108639 0.905000 0.146538
LOOP 0.384518 0.178396 0.348900 0.247804

Here W* denotes the window(s) under consideration. Sample results for input proteins in length-group 70–250 are shown here.
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Step 1: Empirical Bayesian model for 2D-motifs
a) Prior Probabilities of domain-classes:

p0k=Prior probability of {domain numbers=k}; k=1, 2; is
computed as,

¼ nk=n ð2Þ
Where, n=cardinality of the input set and nk=no. proteins
(in this set) with k domains.

For example, for proteins in the length group 70–250, this
probability is found to be approximately equal to 0.84 if k=1
and 0.16 if k=2. This is in accordance with the lengthwise
domain–number distribution reported by [3]. Similar is the
case for the prior probabilities for longer proteins.

b) Conditional probabilities of events defined for 2D-
motif distribution:

The following probabilistic events in W* are found to be
most informative for distinguishing between single and
two–domain proteins using the 2D-motifs

E1: No. of HLX=1 E3: No. of STR=1 E5: No. of LOOP=1
E2: No. of HLX>1 E4: No. of STR>1 E6: No. of LOOP >1

c) Posterior Probabilities are computed using Bayes’
Theorem as:

P kjEið Þ ¼ p Eijkð Þp0kP2
k¼1 p Eijkð Þp0k

ð3Þ

Where k denotes the number of domains. The prior
probabilities p0k are given by Eq. 2 and the conditional
probabilities p Eijkð Þ are estimated using the relative
frequency plots from the input set.
Step 2: Computation of Probabilities in terms of 3D-

motifs:
Noting that the denominator of Eq. 3 is common for all

k, we consider only the terms associated with the numerator
for computation of the decision functions for Bayesian
classification.

Let Di, i=1, ..., 6, denote the analogues of events E1 to
E6 for the corresponding 3D-motifs.

ψ� kjDið Þ ¼ P kjEið Þλ Ei;Di; jkð Þ ð4Þ

Where P(k∣E) denotes the posterior probability given by
Eq. 3 above; and λ() is estimated in terms of the joint
probabilities (e.g. see Table 1) of the corresponding 2D-
and 3D-motifs in the specified region.

Three types of experiments are carried out considering
different portions in W*. Experiment I: entire portion W* of
interest; Experiment II: the exact location in W* where the
2D- and 3D- motifs of same type would occur; Experiment
III: the optimal combination GX of overlapping segments in
W* with respect to the specific motif type say X;
‘optimality’ and GX as defined in Estimates for joint
probabilities of 2D- and 3D- motifs.

The third set of experiments is found to give best results
in terms of distinct plots of ψ * for single and multi-domain
proteins in the training sample. Sample outputs of some
results in this regard are shown in Fig. 1a–d.

Extension to classifying single, two-continuous,
and two-discontinuous domains

The same method is extended for classifying single, two-
continuous and two-discontinuous-domain proteins. The
protocol described above is used for the estimations of
respective prior, conditional and posterior probabilities and
the decision function ψ*; here k is assigned three distinct
integer labels for the class-types 1d, 2d and 2dd. In this
case also, the results showed the third experiment, viz.,

Fig. 1 Decision Function plots ψ* (class|event) for Experiment III
where event is defined in terms of the 3d-motif: a protein length-group
70–250; class 2d; event HLX ≥1; b protein length-group 251–300;
class 1d; event HLX ≥1; c protein length-group 301–400; class 2d;
event STR ≥1; d protein length-group 251–300; class 2dd; event
LOOP ≥1. Other details as explained in the text (see Illustrations in
Unexpected likelihood of motifs—new insights)
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computing the desired probabilities in the optimal segments
of W* to be the best for predictions.

Prediction of domain-class for validation sample

For a protein in the validation data set, we use only its
primary sequence and the PSIPRED predicted secondary
structure. Identifying its length group and the events Ei

present in the corresponding optimal segments of W*, the
decision function ψ* is computed as per (4) with k
representing distinct integer labels for the class-types 1d,
2d and 2dd.

In the conventional Bayesian sense, the class for which
the decision function is maximum would be selected.
However this is not strictly applicable here, as different
proteins in the same domain-class may have different ψ*
with respect to the same event because their optimal
segments could be different. Moreover, the conventional
approach may be inappropriate owing to the possibility
that, for a protein sequence, approximately the same
‘maximum value’ of ψ* is obtained for two different
domain-classes.

We therefore use certain data-driven heuristics [16, 17]
for classification.

Heuristics for predictive classification

During trials on the training sample, the distinct distribution
of ψ* in different classes with respect to common events
gave rise to heuristics like—“If the estimated decision
function ψ* with respect to certain event lies in a particular
interval, then a particular type of domain class...”; Or, “If an
event is absent then the odds ratio in favor of domain type,
say k1 against type k2 are β1:β2”; Or, combinations of these
kinds of heuristics.

Based on its performance for the training sample, each
heuristic is also assigned a worth, a quantity directly
proportional to its overall success rate of correct predic-
tions. The heuristics with higher worth are given preference
in case of a tie while predicting the domain-class of a
protein sequence in the validation sample. Suppose there is
also a tie on the worth, then the class that has higher prior
probability would be selected.

Results and discussion

Proteins in the validation sample are treated as uncharac-
terized, i.e., no knowledge other than their primary
sequences and PSIPRED predicted secondary structures, is
used. Predictions of their domain-class are made using the
Bayesian heuristic algorithm described above. The pre-
dicted classes are verified against the domain-class allocat-
ed by the CATH database. Accuracy is estimated as the
percentage of proteins where the predicted class and the
CATH-assigned class are the same. The average prediction
accuracy for single (1d), two-continuous (2d) and two-
discontinuous (2dd) domain proteins in the validation
samples is found to be 83.3, 60 and 65.7%, respectively.

The performance of our method was compared with that
of the best-known computational methods DGS and
DomSSEA on the same validation sample. The predictions
of DGS and DomSSEA are made using their web utilities
[3] (as of Oct.–Nov. 2005) and http://bioinf.cs.ucl.ac.uk/
dompred (latest version). The accuracies of DGS for class
1d, 2d and 2dd are: 100, 0 and 0%, respectively. The
corresponding accuracies of DomSSEA are: 72, 24 and 0%.

The accuracies and false-prediction details of our method
(DPCP_0) when applied are shown in Table 2 below for
different sequence-length groups.

Bayesian learning models have been used extensively in
AI systems with remarkable success. Their power lies in
computational simplicity and sequential updating of ac-
quired knowledge without any constraint of specific
probability distribution. Another important factor is the
flexibility to incorporate, in a modular way, empirical
probabilistic rules for knowledge acquisition. This is why
Bayesian data mining continues to be most suitable for

Fig. 1 (continued)
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unstructured, uncertain and uncharacterized data with high
complexity, heterogeneity and multiplicity of information/
knowledge contained in them. The protein structural data
are the best example of this kind.

We have used this approach for ‘extracting’ the
nonlinear random features that play a key role in charac-
terizing single or multiple-domain tertiary structures. In
particular, our Bayesian machine-learning algorithm is
found to be efficient and most accurate (as compared to
the best known computationally simple methods reported
so far) in predicting whether an uncharacterized protein
sequence would have 1d, 2d, or 2dd.

Despite the fact that optimal segments, and hence the
value of the decision function ψ* for the events associated
with these segments would be different for each protein, we
have found the variation of ψ* to be quite narrowly
distributed within a common length-group and domain
class. Modeling the posterior probability functions with
respect to these factors using the ψ* curves for different
length groups in our computational experiments would be
an interesting theoretical research problem with promising
scope in structural biology, proteomics and evolutionary
studies on proteins.

Scope for improvement of the DBP prediction

Accurate prediction of the domain class promises improve-
ment in the domain-boundary prediction by the computational
methods that begin with a random guess or a guess based on
protein-sequence length. Our method DPCP that begins with
the (predicted) knowledge of the domain class and then
computes expected domain-boundary points is an example.
The details of this method have been reported separately [10].
The accuracy of its top-ranked solutions is found to be
around 84, 64, 58 and 53% for predicting the dbp of two
continuous domain proteins in the length groups 70–250,

251–300, 301–350 and 351–400, respectively. This is either
better or closely comparable with the best-known methods
so far. Its performance is significantly better than the latter in
predicting the dbp of 2dd proteins; for the corresponding
length groups the prediction accuracies in this case are
around 74, 80, 62 and 60%.

Unexpected likelihood of motifs—new insights

Computational methods of structural biology often focus on
sequential and structural homology with some reference set.
The unique aspect of our Bayesian approach is that it does not
require homology with any reference set. This ab initio method
exploits the random variation as well the similarity of certain
structural features within a domain-class and the distinct
statistical nature of these between different domain classes.
The prediction results show good potential of this method.

It is important to note that, although the sequences in our
data sets had no homology and the best results are found for
the computational experiments on optimal segments, which
could be different for different proteins, the ψ* values for
proteins in the common length group and domain class are
clustered in some small intervals only—the within cluster
variance (of computed values of ψ*) is of the order of 0.003.
Interestingly, these intervals are mostly distinct for the single
and two-domain cases; hence the Bayesian heuristics have
worked efficiently. The heuristics pertaining to ψ* for any of
E1, E2, E3 falling in specific intervals are found to make
correct predictions with 68% to 92% accuracy.

Each curve in Fig. 1 is plotted only for distinct values
of ψ* (w.r.t. the particular event and domain class in a
given protein length group). The estimates of ψ* for
different proteins in the input sample are found to cluster
around of these distinct values. Some of these clusters and
the confidence levels of predicted class (as 1d or 2d or
2dd) when ψ* belongs to the corresponding intervals are
also shown along the curves. Thus, the Figures compre-
hensively illustrate the trend, pattern and extent of
variation in posterior probability and also provide quali-
tative as well as qualitative comparison between the
classes of interest.

Illustration

In each Figure, the integers 1, 2, ...., m along the horizontal
axis are only indicators of the m distinct values of, ψ*; the
ψ* values are represented along the vertical axis. The ψ*
values between a pair of two consecutive points, marked by
“[” and “]”, respectively, on each curve represent an
interval used in some heuristic to predict the corresponding
domain class distinctly. The (relative) likelihood of this
prediction being correct is shown (on a 0 to 1 scale) on the
curve between that pair of marked points. If there are no

Table 2 Percentages of correct, false–positive and missed classifications

Protein Sequence Length By CATH % of proteins (of CATH
given domain-class)
predicted in domain-class

1d 2d 2dd

70–250 1d 83.50 6.59 9.91
2d 29.60 57.40 13.00
2dd 31.77 1.23 67.00

251–300 1d 85.14 14.86 0.00
2d 23.21 64.30 12.49
2dd 18.18 11.82 70.00

301–400 1d 81.12 15.03 3.85
2d 35.59 58.0 6.41
2dd 26.67 13.33 60.00

The accuracies (correct prediction percentages) are shown in boldface.
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marks shown for corresponding interval of values on the
other curve, or if the interval is not attained on this curve,
then the chance of the class represented by the latter is 0.
For example, the two topmost pair of marks in Fig. 1b show
that if the computed ψ* lies in the interval [0.55, 0.65] or
[0.75, 0.85], then predict single domain (1d) class. The
likelihood of this decision being correct is 0.27+0.46
(=0.73), whereas that of predicting the two–continuous
domain (2d) class is 0.

For each length-group, in general, the heuristics found
most useful in classifying between 1d and 2d are (I) those
defined in terms of non-occurrence of the events of STR
and/or HLX and (II) those defined for different intervals of
ψ* associated with these events. LOOPs did not play any
significant role here. On the contrary, the heuristics
associated with occurrence or non-occurrence of LOOP
are more applicable while distinguishing the 1d and 2dd
classes (Fig. 1d for example). These kinds of observations,
together with the fact that linker regions between domains
often play significant roles in the activity and flexibility of
the proteins, indicate the possibility of nature favoring
certain geometries for certain functions in the protein
repertoire.

Further, the intermediate results of data mining for our
Bayesian machine-learning algorithm elucidate some unex-
pected features with respect to the occurrence of structural
motifs.

For example, though secondary (local) helical patterns
are generally expected to occur in the vicinity of the dbps
(e.g. [18, 19]), the occurrence of their statistical analogues
in 3D-motifs does not seem to be significantly different in
the non-domain region. For example, the behavior of the
variation in their likelihood (ψ*) is either mostly inconclu-
sive (e.g. Fig. 1a) for 2d proteins or is more prominent (e.g.
Fig. 1b) in the class of 1d proteins. On the other hand,
several heuristics derived in terms of ψ* for given STR are
found to be significantly useful in predicting the 2d class
because of the distinct shapes and trends of the curve for
this class and that for the 1d class (e.g. Fig. 1c). The
consistent dominance (higher ψ*) of the curve representing
this class is also notable.

The heuristic associated with the absence of HLX is
found to have an odds ratio in favor of the 1d vs 2d of
34:62, whereas this ratio for the heuristic dealing with
absence of STR is 51:36 for 1d vs 2d and 35:6 in the case
of 1d vs 2dd class.

The Bayesian probabilistic approach used here could
also be extended with incorporation of certain sub-motifs,
geometrically invariant patterns and clusters of amino acids
[20], to study the evolution of the protein universe and
associated aspects of protein structural and functional
genomics. Because of the inherent heterogeneity of the
protein data, new statistical experimental designs and non
parametric multivariate analysis would be required to
extend the approach to longer protein chains and multiple
domain classes.
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